HIGHER DEFORMATIONS OF LIE ALGEBRA REPRESENTATIONS II

نویسندگان

چکیده

Steinberg's tensor product theorem shows that for semisimple algebraic groups the study of irreducible representations higher Frobenius kernels reduces to first kernel. In preceding paper in this series, deforming distribution algebra a kernel yielded family deformations called reduced enveloping algebras. we prove Steinberg decomposition can be similarly deformed, allowing us reduce representation theoretic questions about these algebras We use derive structural results modules over Separately, also show many hold without an assumption reductivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leibniz algebra deformations of a Lie algebra

In this note we compute Leibniz algebra deformations of the 3-dimensional nilpotent Lie algebra n3 and compare it with its Lie deformations. It turns out that there are 3 extra Leibniz deformations. We also describe the versal Leibniz deformation of n3 with the versal base.

متن کامل

L∞ algebra structures of Lie algebra deformations

In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or L∞ algebra. All such obstructions have been transfered to the revelvant L∞ algebras which contain only three terms.

متن کامل

Deformations of the Restricted Melikian Lie Algebra

We compute the infinitesimal deformations of the restricted Melikian Lie algebra in characteristic 5.

متن کامل

Deformations of Restricted Simple Lie Algebras Ii

We compute the infinitesimal deformations of two families of restricted simple modular Lie algebras of Cartan-type: the Contact and the Hamiltonian Lie algebras.

متن کامل

The Higher Cohomologies of E8 Lie Algebra

It is well known that anomaly cancellations for D16 Lie algebra are at the root of the first string revolution. For E8 Lie algebra, cancellation of anomalies is the principal fact leading to the existence of heterotic string. They are in fact nothing but the 6th order cohomologies of corresponding Lie algebras. Beyond 6th order, the calculations seem to require special care and it could be that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 2021

ISSN: ['0027-7630', '2152-6842']

DOI: https://doi.org/10.1017/nmj.2020.13